For example, if someone infected with Covid-19 is wearing a mask and singing loudly in an enclosed room, a person who is sitting at the other side of the room is not more protected than someone who is sitting just 6 feet away from the infected person. This is why time spent in the enclosed area is more important than how far you are from the infected person.
Masks work in general to prevent transmission by blocking larger droplets, therefore larger droplets aren’t making up the majority of Covid infections when most people are wearing masks. The majority of people who are transmitting Covid aren’t coughing and sneezing, they’re asymptomatic, Bazant said.
Masks prevent indoor transmission by both filtering exhaled infectious droplets and blocking exhaled jets of air, best visualized by imagining someone exhaling smoke. Exposure to these jets of infectious air results in a higher risk of transmission, relative to that of the well-mixed background, Bazant said he and Bush determined in
an earlier study.
Masks help indoor transmission by both filtering exhaled infectious droplets and blocking exhaled jets of air, which can be seen when a smoker exhales. Exposure to exhaled jets of infectious air results in a higher risk of transmission, relative to that of the well-mixed background, Bazant and Bush said.
Those in the same room as a smoker are heavily affected by the secondhand smoke that makes its way around the enclosed area and lingers. The same logic applies to infectious airborne droplets in well-mixed room, according to the study. When indoors and masked, factors besides distance can be more important to consider to avoid transmission.